平成27年度 西部地域地下水賦存量調查 結 果 概 要

- ・本書は、平成27年度末に終了した静岡県西部地域における地下水賦存量調査結果のポイントを簡潔に取りまとめたものです。
- ・地下水賦存量調査は、地下水の実態を明らかにするため、 平成25年度から27年度にかけて実施しています。

<調査スケジュール>

地域	平成25年度	平成26年度	平成27年度
東部	基礎データの収	水収支シミュ	
	集•整理、需要	レーション、利	
	予測	用可能量算定	
中部		基礎データの	水収支シミュ
西部		収集•整理、需	レーション、利
		要予測	用可能量算定

・静岡県では、本調査結果を基に、地域の実情に応じた地 下水管理のあり方を検討していきます。

【本書についてのお問い合わせは】

くらし・環境部環境局水利用課 電話 054-221-2289、2256

<目 次>

1 調査の目的	1
2 西部地域の調査内容	3
(1) 調査地域	3
(2) 調査内容(手順)	4
3 地下水需要量の将来予測	5
(1) 予測方法	5
(2) 新規開発計画等の需要量	6
(3) 予測結果	7
4 水収支解析モデルの作成	8
5 利用可能量の検討	9
(1) 利用可能量の検討・算定方法	9
(2) 利用可能量の算定結果	15
6 予測解析	16
(1) 予測条件	16
(2) ケース設定	17
(3) 予測解析の結果	18
7 総合水収支	25
	26
(参考)静岡県地下水の採取に関する条例	20

1 調査の目的

地下水賦存量調査は、「内陸フロンティア」の推進等により、地下水需要の変化が予想される中、今後の地下水管理のあり方等を検討していく上での基礎資料とするため実施しています。

現在取水規制

のない内陸部

「内陸のフロンティア」を拓く取組による、水需要の増大

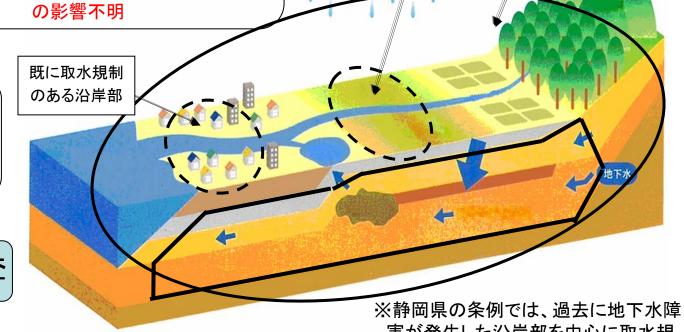
規制の有無にかかわらず 流域全体で調査を実施

沿岸部

- ・過去に地下水障害が発生
- ・地下水の取水規制あり
- ・ 適正揚水量は把握

内陸部

- ・地下水の取水規制がない
- ・地下水の利用量や流動は不明
- ・取水量増大による沿岸部等へ の影響不明



内陸部を含めた 水系全体の地下水流動 や賦存量などの 解明が必要

地下水賦存量調査

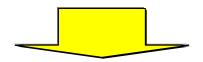
次ページへ

1

《静岡県の条例では、過去に地下水障 害が発生した沿岸部を中心に取水規 制を設けています。 (26ページ参照)

地下水賦存量調査

- 正確なデータと科学的根拠に基づいて地下水の実態を明らかにする調査です。
- ・ 県内を東部(H26完了)・中部(H27完了)・西部(H27完了)の3地域に分けて実施します。
- ・ 調査期間は、各地域2年間です。


1年目

・地質・地下水のデータ整理

•将来の地下水需要予測

成果 を活用 2年目

・障害を起こすことなく取水できる地下水量等の把握

調査結果を活用し、地下水の利用と保全の両立を目指します

- ・ 地下水管理のあり方について検討を進めます。
- 地下水の実態にあった企業誘致や地域開発等を促進します。
- 地下水の過剰取水などによる自然環境や生活環境への影響を抑制します。

2 西部地域の調査内容

(1)調査地域

下表の6市1町を調査地域としています。

地域	市町名
西遠 (県条例)	浜松市
中遠 (県条例)	磐田市、袋井市、森町
浜名湖西岸 (自主規制)	湖西市、(浜松市)
その他	菊川市、掛川市

(2)調査内容(手順)

〈平成26年度〉

- ①既存資料の収集・整理(地形・地質、水文、土地利用等)
- ②水理地質構造検討、地下水系の区分

③一斉測水調査の実施(井戸約200箇所)

④地下水面図の作成

⑤地下水揚水量の把握

⑥今後10年間の水需要と土地利用の推定

〈平成27年度〉

	項 目	内容概要	掲載ページ
①前年度までの調査の データ補完		②の水需要の予測、③の水収支シミュレーションを実施するために不足するデータの補完を行う。	_
②水	需要等の予測	前年度に行った調査に、今後の市町の土地利用・開発計画などを勘案し、平成35年度までの水需要と土地利用を推定・考察する。	5~7
③水 ン	収支シミュレーショ		
	水収支の計算	得られたデータをもとに、該当地域の水収支の概要(涵養量、揚水量、地下流動量等)を地域別に検討する。	_
	水収支解析モデル の作成	現況地下水位の解析を行うため、涵養量、揚水量、透水係数等適切なパラメータ (変数)を組み込んだ水収支解析モデルを作成する。	8
現況解析		前年度までの調査による地下水位の平面分布及び時系列変動等を再現できるよう、水収支解析モデルにおけるパラメータを確定する。	_
予測解析		再現性を確認した地下水位観測井戸等について、確定したパラメータによる水収支解析モデルを用いて平成35年までの地下水位予測を行い、表化・グラフ化する。	16~24
④水収支と利用可能量 の検討		③の水収支シミュレーションの結果を踏まえて、地域ごとに水収支と地下水賦存量、利用可能量を検討する。	9~15 25

3 地下水需要量の将来予測

(1)予測方法

原単位法を基本としています。原単位法とは、フレーム(水利用のある対象を表す単位)と原単位(対象単位あたりの地下水利用量)に分けて対象をとらえ、その積によって地下水需要量を推計する方法です。

フレーム

水需要に関係があると考えられる人口や面積、製造品出 荷額等を選択。

原単位

人口1人あたりや単位面積あたり、製造品出荷額等1億円あたりなど、単位あたり地下水揚水量を定めた係数。

※ これらについて地下水を利用する用途ごとに整理して、西部地域全体の地下水需要を算定する

表 3-1 用途別のフレームと原単位

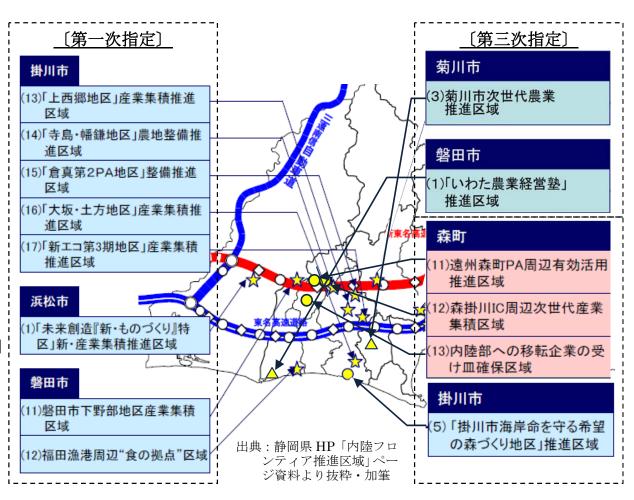
用途区分	フレームに用いる単位	原単位	用いる資料			
生活用	人口(市町別)	一人当たりの地下水揚水量(市町別)	各市町人口統計資料など			
農業用	耕地面積(市町別)	耕地面積当たりの地下水利用量(地目別)	農林業センサスなど			
工業用	製造品出荷額等 (市町別)	製造品出荷額当たりの井戸水用水量 (工業地区別・産業中分類別)	経済センサスなど			
養魚用	※設定せず、揚水	※設定せず、揚水量集計結果に基づくトレンド予測とする				
建物用		<i>''</i>				
その他		<i>''</i>				

(2)新規開発計画等の需要量

内陸フロンティアを拓く取組み等により、今後、新たに発生する地下水需要量を推計しました。 その結果、西部地域6市1町の19の事業計画のうち、地下水利用が予想される16事業の需要量は1日当り16,681㎡となりました。

<主な推計方法>

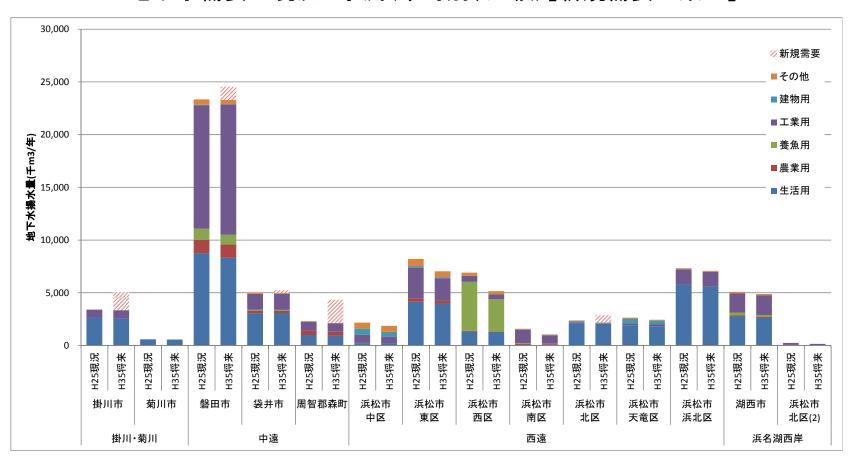
①製造業


計画事業面積×対象業種の事業所 面積当りの井戸水用水量

②物流業(17.6㎡/日/ha)

現物流事業事例の地下水需要 650㎡/日/事業所面積36.9ha

③商観光業


観光入込客数×日帰り観光客の1日 当り使用水量(定住人口の使用水量 の15%)

(3)予測結果

2023年(平成35年)までの予測では、前ページの新規開発計画を含まない場合、 すべての市町で地下水需要量が減少する結果となりました。 新規開発を含めた場合、掛川市、森町で地下水需要量の大きな増加が予想されています。

<地下水需要の現況と予測(市町別、比較)【新規需要上乗せ】>

4 水収支解析モデルの作成

後述する利用可能量の検討や予測解析に活用するため、水収支解析モデルを作成しています。

地下水流動モデルの基本設計

〇基本条件

解析コード: MODFLOW(USGS(アメリカ地質調査所)開発)

対象市町:3ページの調査地域の市町

解析格子:250mメッシュ

時間刻み:月単位

〇計算期間:検証:H15からH25、予測:H26~H35

〇地形地質:地表標高、水理地質、水理定数

〇土地利用:国土数値情報 土地利用メッシュ

○涵養量:検証計算:地表水流動モデル、タンクモデルによる推計

予測条件: 将来シナリオに基づく予測涵養量

〇水利用:検証計算:揚水量集計結果に基づく実績値

予測計算:将来シナリオに基づく予測揚水量

※地表水流動モデル

中・西部地域は、東部地域と異なり、安倍川、大井川、天竜川といった1級河川が広大な扇状地を形成しており、このような河川は流出域(湧出域)としての機能だけでなく、主要な地下水涵養源にもなっている。こうした特殊性を踏まえ、河川流量・水位に係る地表水の流動を加味した上で、地下水涵養量を同時に推計するため地表水流動モデルを作成。

※本調査における『水収支解析モデル』とは

地下水が賦存し流動する地下地質空間を四角柱あるいは三角柱の格子で区分し、個々の格子における地下水流動を表す微分方程式を、差分法や有限要素法を適用して計算機ですばやく解ける行列方程式に表し、これを数値解法を用いて計算させることで、各格子の地下水位(水頭)や格子に出入りする地下水の流入出量を算出するもので、地下水位の実測値や水収支を適切に再現するように構築したもの。

5 利用可能量の検討

本調査おける『利用可能量』とは、「賦存量(地中に蓄えられている地下水量)のうち地下水障害を発生・拡大させることなく利用できる地下水量」をいいます。

本調査の大きな目的の1つが、この地下水の利用可能量を地下水系ごとに算定することであり、利用可能量は今後の地下水管理のあり方検討等の指標として活用されます。

(1)利用可能量の検討・算定方法

地下水障害(湧水量減少、地盤沈下、塩水化)の拡大防止や解消のために必要な地下水位を定め、その水位を下回ることなく取水できる地下水の量(揚水量)を利用可能量としました。

〇検討要件

湧水量要件 :地下水位と湧水量の観測値を用い、湧水箇所の湧水量を減少させない地下水位を設定

地盤沈下要件: 地下水位と地盤変動量の観測値を用い、地盤沈下を発生させない地下水位を設定

塩水化要件:地下水位と塩水化観測井の観測値を用い、塩分濃度の基準値(200mg/L)以下となる地下

水位を設定

※3要件の設定が困難な場合は、「安全揚水量」の算出手法を参考に利用可能量を算定する。

安全揚水量=地下水流動量Q×0.7

☆本調査における地下水流動量Q=(モデルにおける検討範囲の地下水流入量と地下水流出量の平均) =(地下水流入量+地下水流出量)÷2

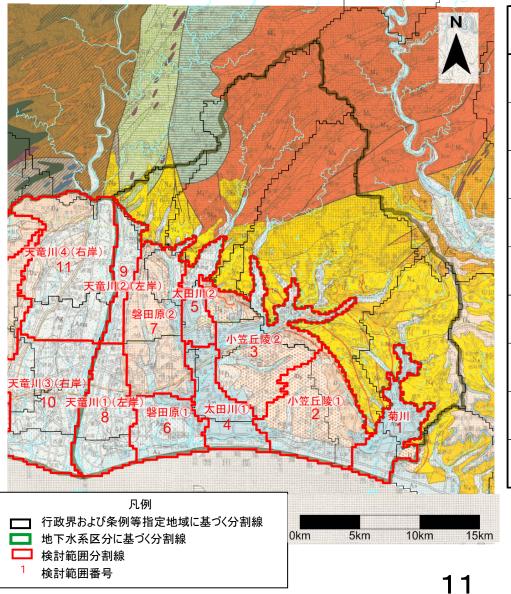
☆一般的な地下水流動量Q=L×W×k×I(Q:地下水流動量、L:帯水層の厚さ、W:帯水層の幅、k:透水係数、i:動水勾配)

<利用可能量の検討手順>

- ・地下水系を考慮した検討範囲(19区域)の設定 ⇒11、12ページ
- ・検討要件(湧水量、地盤変動量、塩分濃度)の選定

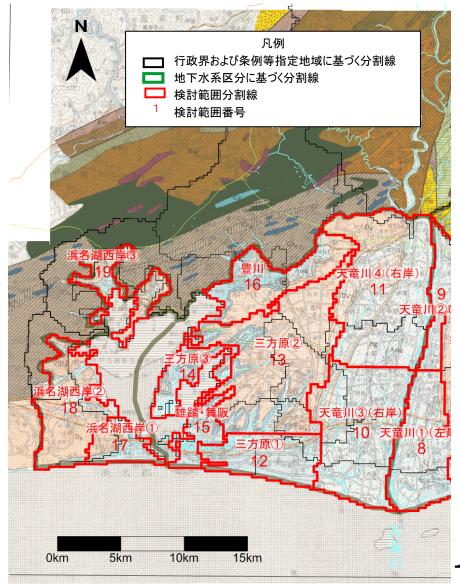
基準水位検討に適した観測井戸の選定

観測資料に基づく地下水の 基準水位の設定 ⇒13ページ① モデル感度解析による地下水位と揚水 量の関係式の作成 ⇒13ページ② 14ページ(図①)


検討範囲毎の利用可能量の算定 ⇒13ページ② 14ページ(図②)

検討範囲間の相互関係を考慮した 利用可能量の算定 ⇒14ページ(図③)

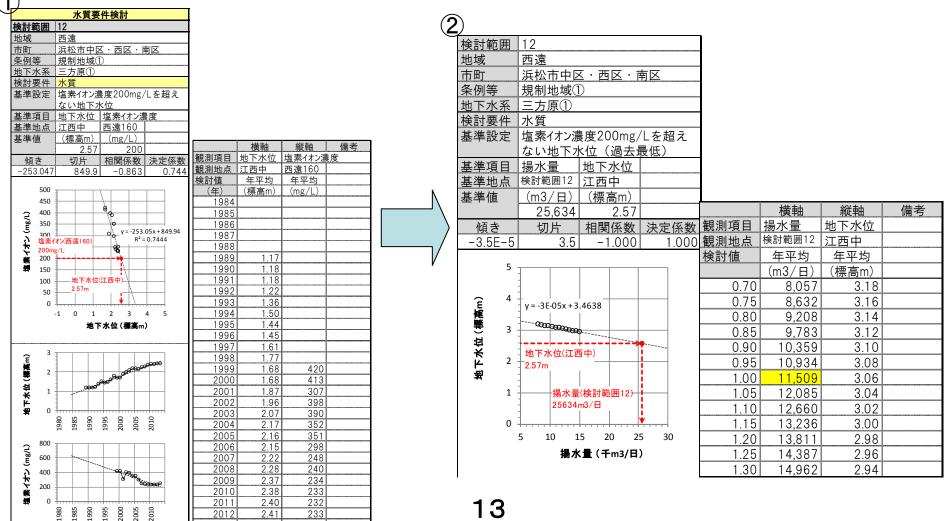
<検討範囲の設定(中東遠)>


流域区分(菊川、太田川、天竜川)を基本とし、さらに地形・地下水流動方向や、市町境界や条例等の地域区分を考慮して細分し、下表のとおり9の検討範囲を設定しました。

検討 地下水系		市町·条例等区分
1	菊川	菊川市·掛川市
2	小笠丘陵①	掛川市(市条例指定地域・その他地域)
3	小笠丘陵②	掛川市(その他地域)·袋井市(規制地域③· ④·適正化地域®)·森町(規制地域④)
4	太田川①	袋井市(規制地域①·②)·磐田市(規制地域②·③)
5	太田川②	袋井市(規制地域③)·磐田市(規制地域③)· 森町(適正化地域⑦)
6	磐田原①	袋井市(規制地域①)·磐田市(規制地域①)
7	磐田原②	袋井市(適正化地域⑦)·磐田市(規制地域 ①·適正化地域⑦)·森町(適正化地域⑦)
8 天竜川① (左岸)		磐田市(規制地域①・⑤)
9	天竜川② (左岸)	磐田市(適正化地域⑥・⑦)

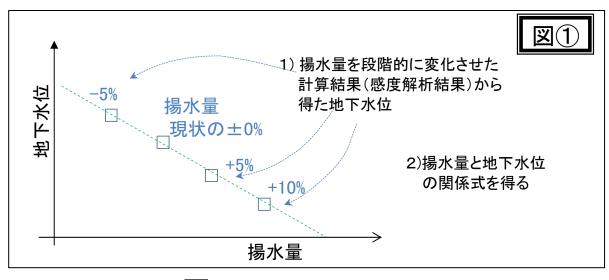
<検討範囲の設定(西遠、浜名湖西岸)>

流域区分(菊川・太田川、大井川、天竜川・都田川)を基本とし、さらに地形・地下水流動方向や、市町境界や条例等の地域区分を考慮して細分し、下表のとおり10の検討範囲を設定しました。

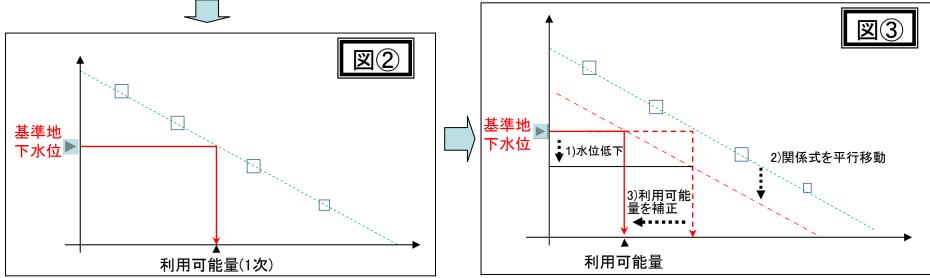

検討 範囲	地下水系	市町・条例等区分			
10	天竜川③ (右岸)	浜松市中区(規制地域⑤)·浜松市東区(規制地域⑤)· 浜松市南区(規制地域①·⑤)			
11	天竜川④ (右岸)	浜松市東区(規制地域⑥)・浜松市天竜区(その他地域)・浜松市浜北区(その他地域)			
12	三方原①	浜松市中区(規制地域①)·浜松市西区(規制地域①)· 浜松市南区(規制地域①)			
13	三方原②	浜松市中区(規制地域②·③)·浜松市東区(規制地域 ③)·浜松市西区(規制地域②·③)·浜松市北区(規制地 域③)			
14	三方原③	浜松市西区(規制地域④)			
15	雄踏 ·舞阪	浜松市西区(その他地域)			
16	都田川	浜松市北区(市条例指定地域・その他地域)			
17	浜名湖 西岸①	湖西市(自主規制地域①·③)			
18	浜名湖西岸②	湖西市(自主規制地域①・④・⑤)			
19	浜名湖 西岸③	湖西市(自主規制地域②·⑥)			

<地下水の基準水位の設定>

2013


ここでは、例示として検討範囲12の地域の基準水位の設定について示します。

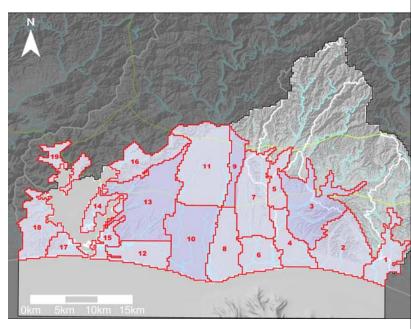
- ①この地域では「水質(塩水化)」を検討要件とし、地下水位は「江西中」、塩素イオン濃度は「西遠160」を基準地点(井戸)として選定し、この2つの地点の過去の観測値から地下水位と塩素イオン濃度の相関関係を求め、「西遠160」の塩素イオン濃度が200mg/Lとなる「江西中」の地下水位を基準地下水位とします。
- ②次に、「江西中」の地下水位とこの地域の揚水量との相関関係を求め、基準地下水位に対応する揚水量を一次検討利用可能量としました。



<地下水位と揚水量の関係式の作成と利用可能量の算定>

解析モデルを活用して地下水揚水量を段階的に増減させた解析を行い、このときの地下水位の計算値から、地下水揚水量と地下水位の関係式を観測井毎に求めます(図①)。この関係式に基準地下水位を与えることで、基準水位を満たす地下水揚水量(=利用可能量 ※1次)を算定します(図②)。

次に、再度解析モデルを活用して各地域毎に利用可能量(1次)を揚水したとして解析を行い、その結果、算定された地下水位が基準地下水位より低下したときは、関係式を平行移動して補正し、利用可能量としました(図③)。



14

(2)利用可能量の算定結果

検討範囲ごとの利用可能量は下表のとおりです。現状(平成25年)の揚水量との比較で見ると、

全ての地域で現状揚水量が利用可能量を下回る結果となりました。

凡例						
	検討範囲分割線					
1	検討範囲番 号					
- +	利用可能量と現状の揚水量との差による					
	検討範囲の塗り分け					

Т.						
検討範囲	地下水系	市町·条例等区分	利用可能量 (補正後)	現状の 揚水量	現状 との差	現状との比
囲			(m3/日)	(m3/日)	(m3/日)	(-)
1	菊川	菊川市・掛川市	9,366	903	8,463	10.38
2	小笠丘陵①	掛川市(市条例指定地域・その他地域)	13,117	4,998	8,120	2.62
3	小笠丘陵②	掛川市(その他地域)・袋井市(規制地域 ③・④・適正化地域®)・森町(規制地域	20,845	9,081	11,764	2.30
4	太田川①	袋井市(規制地域①·②)·磐田市(規制地域②·③)	3,351	2,116	1,236	1.58
5	太田川②	袋井市(規制地域③)·磐田市(規制地域 ③)·森町(適正化地域⑦)	11,895	5,597	6,299	2.13
6	磐田原①	袋井市(規制地域①)·磐田市(規制地域 ①)	3,537	2,790	747	1.27
7	磐田原②	袋井市(適正化地域⑦)·磐田市(規制地域①)·適正化地域⑦)·森町(適正化地域	17,182	17,063	119	1.01
8	天竜川①(左岸)	磐田市(規制地域①・⑤)	34,828	32,852	1,976	1.06
9	天竜川②(左岸)	磐田市(適正化地域⑥・⑦)	28,265	12,638	15,627	2.24
10	天竜川③(右岸)	浜松市中区(規制地域⑤)·浜松市東区 (規制地域⑤)·浜松市南区(規制地域①・	40,225	14,137	26,089	2.85
11	天竜川④(右岸)	浜松市東区(規制地域⑥)・浜松市天竜区 (その他地域)・浜松市北区(その他地域)	42,842	35,574	7,268	1.20
12	三方原①	浜松市中区(規制地域①)·浜松市西区 (規制地域①)·浜松市南区(規制地域①)	20,714	11,509	9,205	1.80
13	三方原②	浜松市中区(規制地域②·③)·浜松市東区(規制地域③)·浜松市西区(規制地域 ②·③)·浜松市北区(規制地域③)	35,321	9,018	26,302	3.92
14	三方原③	浜松市西区(規制地域④)	4,206	1,067	3,139	3.94
15	雄踏·舞阪	浜松市西区(その他地域)	3,919	1,316	2,603	2.98
16	都田川	浜松市北区(市条例指定地域・その他地域)	8,068	5,652	2,417	1.43
17	浜名湖西岸①	湖西市(自主規制地域①・③)	1,851	1,558	294	1.19
18	浜名湖西岸②	湖西市(自主規制地域①・④・⑤)	12,564	12,113	451	1.04
19	浜名湖西岸③	浜松市北区(自主規制地域②・⑥)	2,422	703	1,720	3.45

6 予測解析

地下水位の変化について、水収支解析モデルを用いて、10年間(平成26年~平成35年)の予測解析を行いました。これは、各地域における、降水量、土地利用、地下水の揚水量を順次変化させたケースを想定し、10年後の地下水位の変動状況を予測解析するものです。

(1)予測条件

予測解析に用いる条件は次の3条件です。

〇降水量

平均的降水量:過去10年間において平均的降水量であった平成24年の降水量2,240mm 少ない降水量:過去10年間においてもっとも少なかった平成17年の降水量1,572mm

〇土地利用

現状維持:平成25年将来予測:平成35年

〇地下水の揚水量

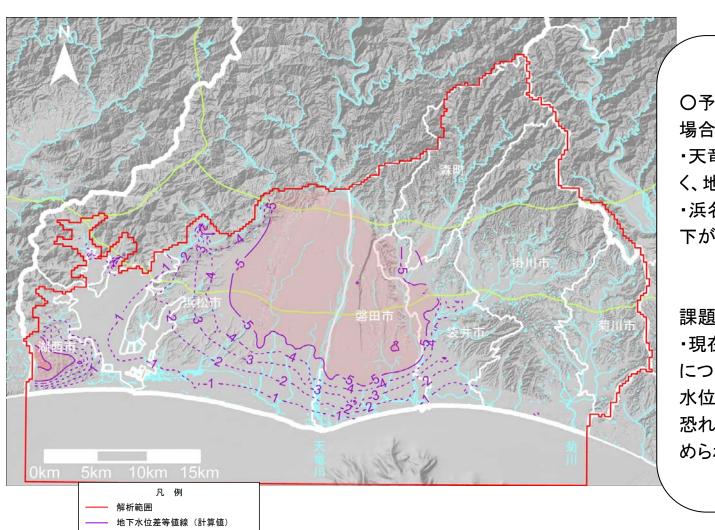
実績揚水量:平成25年の揚水量

届出揚水量: 平成25年の届出揚水量等(下表による)

将来揚水量:開発需要を含んだ将来需要予測(平成26年~35年)に基づいた揚水量 その他:地域で要望や想定されるケースを基に、特定地域の揚水量を変化させる。

	市 町	届出量等
1	磐田市、袋井市、浜松市(旧浜松市)、森町、掛川市	県条例、市条例の届出量
	湖西市、浜松市北区三ヶ日町	浜名湖西岸地域地下水利用対策協議会に届出 された量
3		水質汚濁防止法による井戸水使用量、 水道法による計画給水量のうち井戸分

(2)ケース設定

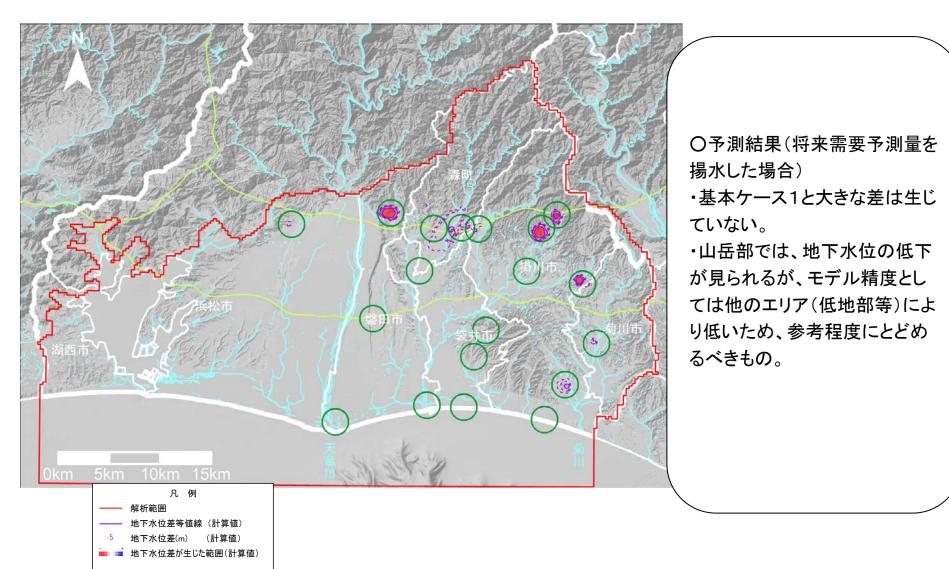

西部地域の調査では、下表の13のケースを設定しています。ケース番号1を基本ケースとし、ケース番号2から13までの条件の変化による基本ケースからの地下水位の変化を予測しています。 本資料では、7つのケースの結果について18ページから示します。

	20)		•			
ケース設定の考え方	ケース 番号	降水量 (涵養量)	土地利用	揚水量		
基本となる比較検討を行	1		┃ ┃現状維持	実績揚水量		
うケース	2	平均的	現仏稚村 	届出量等		
	3		将来予測	水需要予測結果		
	4		TE 112 4# +±	実績揚水量		
	5	少ない	現状維持	届出量等		
	6		将来予測	水需要予測結果		
過去の地下水揚水量を再 現するケース	7	平均的	現状維持	過去最大揚水量		
特定領域の揚水量変化に				中遠 規制地域①, ②, ⑤で利用可能量×1. 5倍を揚水		
よる影響を確認するケー	8			西遠 規制地域①, ⑤で利用可能量×1. 5倍を揚水		
		-		浜名湖西岸 自主規制地域①で利用可能量×1.5倍を揚水		
				中遠 規制地域③, ④, 適正化地域⑥, ⑦, ⑧で利用可能量を揚水		
	9			西遠 規制地域⑥, 浜松市浜北区で利用可能量を揚水		
【中遠地域と、西遠地域				浜名湖西岸 自主規制地域③, ④, ⑤で利用可能量を揚水		
と、浜名湖西岸地域で異 なる揚水条件を設定】				中遠 規制地域③, ④, 適正化地域⑥, ⑦, ⑧で利用可能量×1. 5倍を揚水		
はの物外本件で以た』	10	平均的	現状維持	西遠 規制地域⑥, 浜松市浜北区で利用可能量×1. 5倍を揚水		
				浜名湖西岸 自主規制地域③, ④, ⑤で利用可能量×1. 5倍を揚水		
				中遠 規制地域②, ⑤で利用可能量を揚水		
	11			西遠 規制地域②, ③, ④で利用可能量を揚水		
				浜名湖西岸 自主規制地域④, ⑤で利用可能量を揚水		
				中遠 規制地域②, ⑤で利用可能量×1.5倍を揚水		
	12			西遠 規制地域②, ③, ④で利用可能量×1. 5倍を揚水		
				浜名湖西岸 自主規制地域④, ⑤で利用可能量×1.5倍を揚水		
利用可能量の妥当性確認 ケース	13	平均的	現状維持	全域で利用可能量で揚水		

(3)予測解析の結果

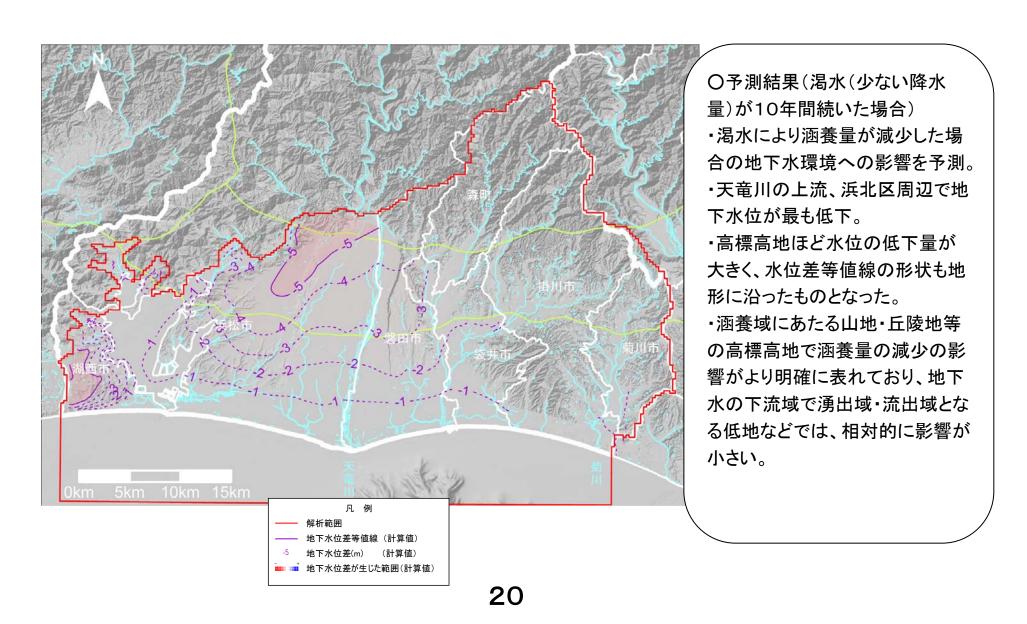
ケース2 届出量上限まで揚水した場合

検討ケース	降水量	土地利用	揚水量
ケース1(基本)	平均的	現状維持	実績揚水量
ケース2	平均的	現状維持	届出揚水量

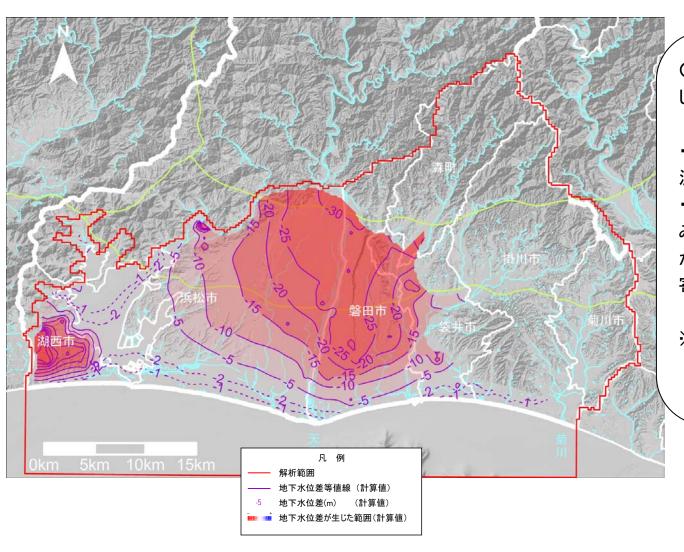


- ○予測結果(届出量を揚水した場合)
- ・天竜川を中心に東西方向に広く、地下水位が5m以上低下。
- ・浜名湖西岸でも地下水位の低 下が見られる。

課題:適正な届出量の整理 ・現在利用していない届出量分 についても揚水すると、異常な 水位低下や塩水化が拡大する 恐れがあり、届出量の削減が求 められる。


ケース3 将来需要予測量を揚水した場合

検討ケース	降水量	土地利用	揚水量
ケース1(基本)	平均的	現状維持	実績揚水量
ケース3	平均的	将来予測	将来需要予測

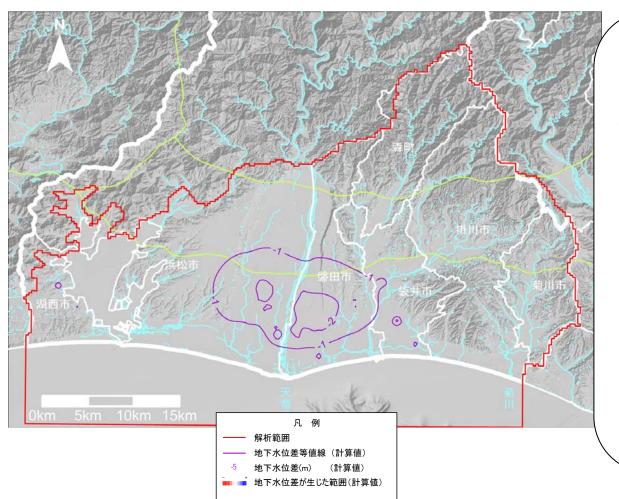

ケース4 少ない降水量が続いた場合

検討ケース	降水量	土地利用	揚水量
ケース1(基本)	平均的	現状維持	実績揚水量
ケース4	少ない	現状維持	実績揚水量

ケース7 過去最大量で揚水した場合

検討ケース	降水量	土地利用	揚水量
ケース1(基本)	平均的	現状維持	実績揚水量
ケース7	平均的	現状維持	過去最大量

〇予測結果(過去最大量を揚水 した場合)

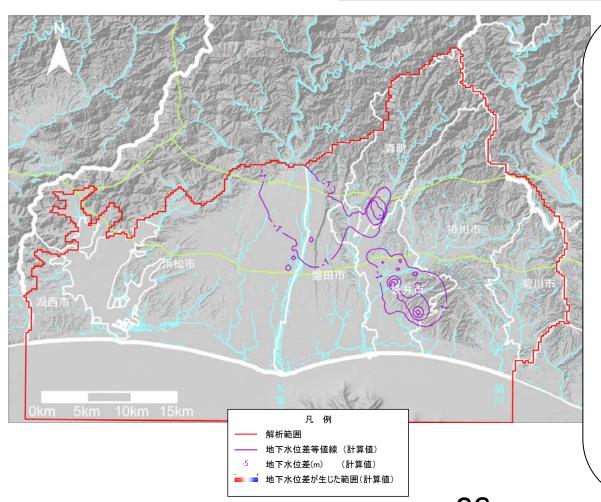

・いずれの地域においても、現 況と比べて大きく水位が低下。

・これまでの各協議会の取り組 みや努力により、徐々に揚水量 が削減され、地下水位の上昇に 寄与してきたことが伺える。

※過去最大揚水量昭和53年条例制定時の量(現状の約6倍)

ケース8 特定地域で揚水量を設定

検討ケース	降水量	土地利用	揚水量
ケース1(基本)	平均的	現状維持	実績揚水量
ケース8	平均的	現状維持	次の地域で利用可能量の1.5 倍を揚水 ・中遠規制地域①、②、⑤ ・西遠規制地域①、⑤ ・浜名湖西岸自主規制地域①


〇予測結果(特定地域の揚水量を変化させるケース)

〔中遠地域〕

- ・規制地域⑤で最も地下水位の低下 が大きく、上流部への影響は小さい。 「西遠地域〕
- ・規制地域⑤で最も地下水位の低下が大きく、上流部への影響は小さい。 「西遠地域〕
- ・自主規制地域①の一部で地下水低 下が発生したが、ごく限られた範囲で あり、上流部への影響は小さい。

ケ ー マロ	特定地域で揚水量を設定
7-79	付处地线人物小单で放火

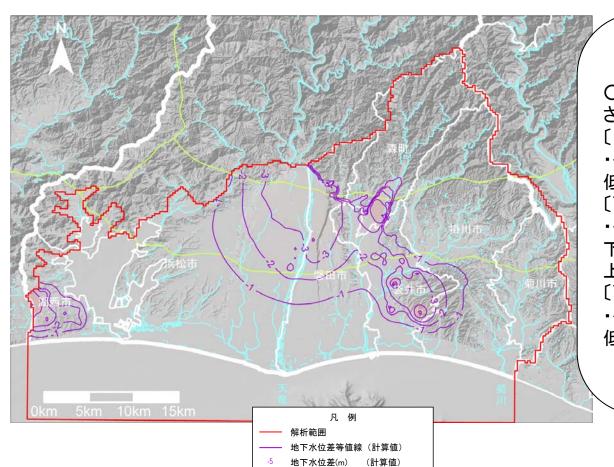
検討ケース	降水量	土地利用	揚水量
ケース1(基本)	平均的	現状維持	実績揚水量
ケース9	平均的	現状維持	次の地域で利用可能量を揚水
			・中遠規制地域③、④
			・中遠適正化地域⑥、⑦、⑧
			•西遠規制地域⑥、浜松市浜北区
			•浜名湖西岸自主規制地域③、④、⑤

〇予測結果(特定地域の揚水量を変化 させるケース)

[中遠地域]

- ・適正化地域®で1m程度の地下水位 が低下する地域が生じた。
- ・これは、揚水量の分布を現況を同じとしており、既設の井戸において多くの揚水を行ったことに相当し、利用可能量の範囲内にあっても、揚水設備の配置について配慮が必要であることを示している。

[西遠地域]


・浜北区付近で地下水位が最大1m程 度低下する地域が生じたが、下流側へ の影響は小さい。

〔浜名湖西岸地域〕

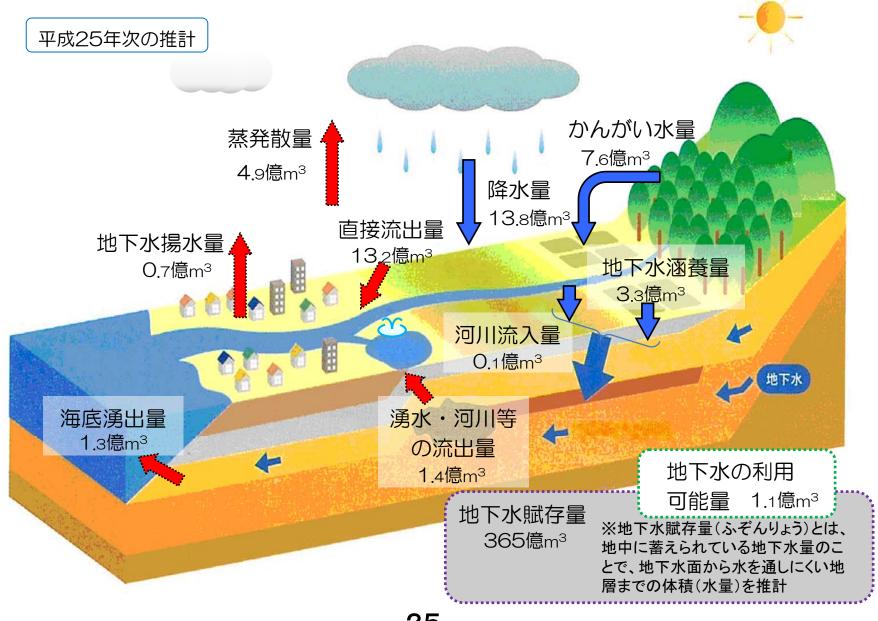
・利用可能量と実績揚水量はほぼ同量のため、顕著な地下水位低下範囲はなかった。

ケース10 特定地域で揚水量を設定

検討ケース	降水量	土地利用	揚水量
ケース1(基本)	平均的	現状維持	実績揚水量
ケース10	平均的	現状維持	次の地域で利用可能量の1.5倍を揚水
			・中遠規制地域③、④
			・中遠適正化地域⑥、⑦、⑧
			•西遠規制地域⑥、浜松市浜北区
			・浜名湖西岸自主規制地域③、④、⑤

地 地下水位差が生じた範囲(計算値)

〇予測結果(特定地域の揚水量を変化 させるケース)


[中遠地域]

・ケース9よりさらに周辺まで地下水位が低下。

[西遠地域]

- ・ケース9よりさらに低下範囲が広がり、 下流にあたる浜松市東区、中区で1m以 上の地下水位が低下する範囲が生じた。 〔西遠地域〕
- ・ケース9では見られなかった地下水位 低下範囲が湖西市で見られた。

7 静岡県西部地域の総合水収支

【参考】静岡県地下水の 採取に関する条例

静岡県では、「静岡県地下水の採取に関する条例」に基づ き、地下水の適正利用を図っています。

本条例は、静岡県のホームページから次の手順で御覧いた だけます。

県政情報「条例・規則・広報」⇒「静岡県例規集」(外部サイトへ リンク)⇒「第1編・第6章・資源」

1 静岡県地下水の採取に関する条例の施行 地下水採取事業者等による自主規制を法的に支 援するため、昭和46年3月に「地下水の採取の適正 化に関する条例」(旧条例)を制定し、6月に施行しま した。

しかし、地下水障害の改善、防止に十分な効果が 得られなかったため、52年8月に旧条例を全面改定 し、揚水規制を強めた「静岡県地下水の採取に関す る条例」を53年1月に施行しました。

2 地域の指定(5地域)

昭和46年度指定(岳南、大井川、西遠)、昭和49年 度指定(中遠)、昭和54年度指定(静清)

※富士川右岸地域は平成21年度に岳南地域に編入

3 規制内容等

- (1)対象 揚水設備(動力を用いて地下水を採取するた めの設備)の吐出口の断面積が14cm² (直径 42mm) を超えるもの

(2) 担制内容(阳水其進の遊空な美数付けた民山制)					
(2) 况前内台	(2) 規制内容(取水基準の遵守を義務付けた届出制)				
指定地域	日最大採取可能量(新設)	規制内容			
岳南	216~1,008㎡/日	- │揚水設備吐出口断面積(15~52c㎡)			
静清	216~1,008㎡/日	毎分最大採取量(0.15~0.7㎡/分)			
大井川	1,008㎡∕日	ストレーナーの位置(一部地域25~150m			
中遠	216~1,088㎡/日] 以深)			
西遠	360㎡∕日	揚水設備間の距離(指導)			

- 県条例指定地域 大井川 - - - - - -
 - (3) 採取者の責務
 - ア 揚水設備設置の届出
 - イ 取水基準の遵守
 - ウ 水利用の合理化の推進
 - エ 地下水以外の水源への転換の推進
 - オ 水量測定器の設置及び採取量の報告
 - カ 地下水利用対策協議会の設置